Type of equipment: microscopy, spectroscopy, chromatography, mechanical/rheological properties, polymer processing/printing, nanoparticle characterization, biological evaluation	Location (e.g. Gillies lab, Nanofab, SSW)	Instrument name	Manufacturer and model, date	Overall capabilities	Contact
Biological Evaluation	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences Building Room 351)	Gel Preparation Instrument	Ettan IPGphor II	Performs first dimension of 2D gel electrophoresis, protein isoelectric focusing (IEF). Can run up to 12 IPG strips from 7cm to 24 cm. Both fixed and variable -length strip holders available.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			BIO-RAD protean Plus Dodeca Cell	Accomodates up to 12 large gels. Equipped with cell cooling, recirculation, and plate electrodes. Includes the PROTEAN Plus hinged spacer plates, PROTEAN Plus multi-casting chamber and the model 495 gradient former.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			BIO-RAD Mini- PROTEAN 3 Dodeca Cell	Capable of running multiple polyacrylamide gels simultaneously. Equipped with a built in cooling coil attached to an external refrigerator circulator to prevent overheating. A stirbar maintains uniform buffer temperature.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			BIO-RAD Criterion Dodeca Cell	Used to run 1 to 12 Criterion gels simultaneously.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			BIO-RAD PROTEAN Dodeca Stainer	Gel staining device that accomodates up to 12 gels. Compatible with Bio-Safe colloidal Coomassie Brilliant Blue G-250 stain, Coomassie Brilliant Blue R-250 stain, SYPRO Ruby protein gel stain, mass spectrometry compatible Dodeca Silver stain kit and the original Silber stain kit.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
Biological Evaluation	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences	Gel Imaging and Analysis	Epson Perfection 4990 Photo Scanner	Contains a built-in transparency unit with moving light source. It can scan gels up to 8.5" x 11.7" in size.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950

	Building Room 351)		ProXPRESS 2D Proteomics Imaging System	UV/Visible transmission and fluorescence imager capable fo measurements on a variety of media including gels, microsope slides, tissue culture plates and exposed film. Maximum scanning area 330 x 270 mm and resolution up to 33 microns. 2D imaging is equipped with the following filter: excitation: 460/80, 480/30, 550/10 emission: 530/30, 650/150, 580/10 for fluorescence scan, as well as 2/0 for silver and coomassie scan.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			GE Storm 820 Phosphorimager	Performs autoradiography for nucleic acid and protein gel analysis. Scan area can be as large as 35x 43 cm.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			Progensis SameSpots	2D gel image analysis tool that allows for spot alignment at the pixel level, resulting in 100% matching across all gels in an experiment.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			Ettan Spot Picker	Robotic system desinged to pick protein spots from 1D or 2D gels and trasfer the picked gel spots into a 96 well microplate in preparation for sutomatic digestion. Manual and Automatic functions are available. Capable of picking up to 384 plugs in any single picking run.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			Waters MassPREP Station for Automated In-gel Digestion	Designed for automated de-staining, reduction, alkylation, in-gel proteolytic digestion of proteins and extraction of pepetides. After extraction, peptide solutions are lyophilized for minimal sample loss, complete process takes 2-3 days. Allows for two 96-well plates to be processed simultaneously.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86950
			LC-MALDI Prep	Not implemented yet.	
Biological Evaluation	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Surface plasmon resonance system	Biacore X	Used for real-time biomolecular interaction analysis, the measurement of kinetic and equilibrium constants and analysis of multiple binding patterns.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere lbriere2@uwo.ca 519-661-2111 x85302
Biological Evaluation	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Surface plasmon resonance system	Nicoya OpenSPR	Can be used to obtain affinity, kinetics and binding specificity for proteins, peptides, antibodies, DNA, RNA and small molecules.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere lbriere2@uwo.ca 519-661-2111 x85302

Biological Evaluation	Gillies Lab MSA 3210	Plate Reader	Tecan, Infinite M1000 Pro, 2011	For use with standard microplates for Absorbance and Fluorescence intensity measurements, polarization and luminesce measurements and AlphaScreen/AlphaLISA Assays.	E. Gillies egillie@uwo.ca
Chromatography	Gillies Lab MSA 3210	GPC	Wyatt miniDawn LS detector, WTREOS-03, Waters HPLC pump, 515, 2007 Waters UV-Vis detector, 2489, 2007 Wyatt optilab REX RI detector, WREX-09, Varian, PLGel Mixed-D columns	GPC running in THF with capabilities to separate polymers ranging in MW of 100 to 1,000,000	E. Gillies egillie@uwo.ca
Chromatography	Gillies Lab MSA 3210	GPC/HPLC	Waters Alliance HPLC pump, 2695, 2007 Waters PDA detector, 2998 Waters RI detector, 2414 PLAquagel	GPC running in Aqueous solvents with capabilities to separate polymers ranging by MW and HPLC analysis	E. Gillies egillie@uwo.ca
Chromatography	Biotron	dual GC-uECD/TCD	Agilent 7890	Volatile Analysis, manual injection gas sample, autosampler, specific in the range of 0.01 ppm	biotron_analytical@uwo.ca
Chromatography	Biotron	GC-TCD	Agilent 7890	1 and 10 mg accuracy autosampler, specific in the range of 0.01 ppm	biotron_analytical@uwo.ca
Chromatography	Biotron	dual GC-uECD/TCD	Agilent 7890	Halogenated organic analysis, autosampler, specific in the range of 0.01 ppm	biotron_analytical@uwo.ca
Chromatography	Biotron	GC-MS/FID	Agilent 7890	Headspace analyzer, programable fro any chromatographic organic parameter, built in library, autosampler, specific in the rang eof 0.01 ppm	biotron_analytical@uwo.ca
Chromatography	Biotron	Inductively Coupled Plasma-MS	Agilent 7700	Identification and quantification of ions in samples. Trace elemental analysis by semi-quantitative and full quantitative method. Covers wide mass range from 6 to 260 amu. Autosampler and HPLC-ICP-MS capable.	biotron_analytical@uwo.ca
Chromatography	Western Science Centre Room 54 (Laboratory for Stable Isotope Sciene)	Ion chromatography	Dionex DX 500	For analysis of cations, anions and organic acids in solution.	519-661-3881 Fred J Longstaffe flongsta@uwo.ca

Chromatography	Western Science Centre Room 54 (Laboratory for Stable	Gas Chromatographs	HP-5730		519-661-3881 Fred J Longstaffe flongsta@uwo.ca
	Isotope Sciene)		HP-5890		519-661-3881 Fred J Longstaffe flongsta@uwo.ca
Chromatography	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences Building Room 351)	FPLC system	Amersham AKTA	Biocompatible, large scale saple preparation system capable of ion exchange/size exclusion/affinity/hydrophilic interaction/reversed phase chromatography. Equipped with P-903 Pump, UV-900 Detector, pH/C-900 Monitor (pH and conductivity measuremnt during LC) and Frac- 9000901 Fraction Collector (automated collection of up to 175 fractions).	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86949
Chromatography	London Regional Proteomics Centre (Medical Sciences Building Room 394)	HPLC	Waters Breeze, Waters 1525 pump, Gilson FC203B fraction collector	Equipped with a dual wavelength detector, capable of binary gradient flows. Used in a hands-on mode for mapping or purifying pepetides. Users provide their own columns.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere Ibriere2@uwo.ca 519-661-2111 x85304
Diffractometry	Western Science Centre Room 54 (Laboratory for Stable Isotope Sciene)	X-ray diffractometer	Rigaku	High brilliance rotating anode. Co K-alpha radiation. Equipped with IBM-PC computer automation.	519-661-3881 Fred J Longstaffe flongsta@uwo.ca
Diffractometry	Surface Science Western LL31	X-ray diffractometer	Rigaku, Smartlab 3kW	This fully loaded system is a high-resolution XRD equipped with a Cross Beam Optics (CBO) system and a high-precision theta-theta goniometer featuring a horizontal sample mount and a 2D HyPix-3000 detector. System capabilities: Powder materials: phase identification, crystalline strain and size, crystallinity, structural analysis and refinement (Rietveld and RIR methods), stress measurement and transmission. Thin films: structural analysis, texture analysis, in-plane diffraction, crystal quality analysis (rocking curve and reciprocal space mapping), high resolution X- ray diffraction and reflectivity (HRXRD and HRXRR), GIXRD depth profiles, 2D stress and PF measurement. Small-angle X-ray scattering (SAXS): particle/pore size distribution and correlation length analysis, nanoscale structural analysis.	

Diffractometry	Chemistry X-ray Facility ChB12	Single Crystal Diffractometer	Bruker, Apex II, 2007	Equipped with Mo X-ray radiation tube, an Apex II CCD detector, 4-axis KAPPA goniometer, K780 X- ray generator. Capable of collecting data at low temperatures with the use of the Oxford cryosystems 700series VT controller. Running the Bruker ApexII crystallographic software.	pboyle@uwo.ca 519-661-2111 x 82743
Diffractometry	Chemistry X-ray Facility ChB12	Single Crystal Diffractometer	Nonius, Apex II, 2007	Equipped with Cu X-ray radiation tube, and Apex II CCD detector, 4-axis goniometer, FR-590 X-ray generator. Capable of collecting data at low temperatures using the Oxford cryosystmes 600 series VT controller. Running the ApexII crystallographic software.	pboyle@uwo.ca 519-661-2111 x 82743
Diffractometry	Chemistry X-ray Facility ChB12	Powder Diffractometer	Inel, CPS, Powder Diffractometer	Equipped with a Cu-Xray radiation tube, Inel XRG 3000 generator and the Inel CPS 120 detector. Capable of collecting data on thin film samples with low incidence angles. Several software are available for analysis including the IMAD, Match! and Software. Also available is the PDF+ ICDD data base for reference look up or to search the library for powder references.	pboyle@uwo.ca 519- 661-2111 x 82743
Diffractometry	London Regional Proteomics Centre (Medical Sciences Building Room 333) Macromolecular Crystallography Facility	X-ray diffractometer	MicroMax-007F, Saturn 994+ CCD detector	Comes equipped with a 4-circle 1/4 chi goniometer, mirrors, a Saturn 994+ CCD detector, crystal cooling X-stream system. Used for protein crystallography and a popular source for small molecule crystallographers who need the additional flux of a rotating anode generator.	Dr. Brian Shilton bshilton@uwo.ca 519-661-4124 Dr. Hong Ling hling4@uwo.ca 519-661-3557 Lee-Ann Briere Ibriere2@uwo.ca 519- 661-2111 x85296
Laser	Western Science Centre Room 54 (Laboratory for Stable Isotope Sciene)	Laser Lines	Merchantek Mir 10-25	CO2 laser, BrF5 extraction line with online capabilities to the Delta Plus XL through dual-inlet mode or continuous flow. Dual chamber for analysis of reactive minerals.	519-661-3881 Fred J Longstaffe flongsta@uwo.ca
			Merchantek LUV 266X	UV laser ablation system. Fluorine extraction line online capabilities to the Delta Plus XL	519-661-3881 Fred J Longstaffe flongsta@uwo.ca
			Airlock	Peripheral for Merchantek Mir 10-25 laser fluorination line. Isolation devise for materials that undergo low temperature reaction with fluorinating agents such as clay minerals.	519-661-3881 Fred J Longstaffe flongsta@uwo.ca

Mechanical	Gillies Lab MSA 3250	Melt Press	Carver, 3851-OC, 2011	For use with ceramics, composites, rubber, silicone, elastomers, thermoplastic resins, and powder metals testing of physical properties such as compression strength, flexural strength, shear strength, flow and colour dispersion. Used for composite molding, compression molding, crushing, forming and encapsulation.	E. Gillies egillie@uwo.ca	
Mechanical	Gillies Lab MSA 3250	Lyophilizer	Labconco, Freezone 2.5 plus, 2007	Evaporation of low volume aqueous solvents from samples.	E. Gillies egillie@uwo.ca	
Mechanical	Fraunhofer Project Centre for Composites Research	Compression Moulding		Hydraulic press with maximum claming force of 25,000kN. Maximum closing speed is 800mm/sec. Capable for SMC, LFT, High Pressure RTM materials and processes. Additional features are Foaming Cycle, Vacuum Assisted Moulding, In-Mould Coating. Hot air oven for pre-heating of co- moulding structures. Mould heating and cooling with water up t o 180C and with oil up to 300C. Equipped for use with carbon fibres.	vugresi@uwo.ca 519-661-2111 x 86975	5
Mechanical	Fraunhofer Project Centre for Composites Research	Thermoset Sheet Moulding Compound		Laboratory units for development of SMC formulations. Direct Sheet Mould compound (D- SMC) line with a maximum sheet width of 800mm and a maximum throughput of 500kg/h. D-SMC line is capable of manufactruing of conventional SMC. Carbon fibre reinforements for SMC materials. Low density fillers and alternative resin systems. Hydraulic high-speed press with a maximum press force of 25,000kN and parallelism control. Vacuum assisted compression moulding.	vugresi@uwo.ca 519-661-2111 x 86975	5
Mechanical	Fraunhofer Project Centre for Composites Research	Long-Fibre Reinforced Thermoplastics		A technology using lightweight materials for semi- structural applications. Compounding twin screw extruder and mixing twin extruder. Hydaulic high- speed press with a maximum press force of 25,000kN and parallelism control. Foaming of polymers. Equipped with a hot air ovenfor pre- heating of local reinforcements. Capable of moulding for manufacturing two or three dimensional demonstrator components.	vugresi@uwo.ca 519-661-2111 x 8697	75

Mechanical	Fraunhofer Project Centre for Composites Research	Resin Transfer Moulding		Includes high performance composite components with continuous fibre reinforcements based on textile structures made from glass, carbon and aramide fibres. Dieffenbacher hydraulic pressure swith maximum clamping force of 25,000kN and parallelism control. Injection equipment; Kauss Maffei high pressure and Wolfangel low pressure RTM equipment, both with resin pre-heating capabilities. Linear and multi-axis robot systems for automated preform handling. Capable of processing different resin types including exposy, unsatruated polyester and polyurethane.	vugresi@uwo.ca	519-661-2111 x 86975
Mechanical	Fraunhofer Project Centre for Composites Research	Injection Moulding Machine	KraussMaffei, KM 1,600/12,000/4,300 MXL	Capable of moulding lightweight parts up to a size of automotive front end carriers. Equipped with a fibre-reserving long-fibre injection screw. Fitted with innovative foam injection moulding technology. All thermoplastic materials, unreinforced as well as short and long-fibre reinforced granules can be processed. Equipped with a circulating hot air oven for preheating of continuous-fivre reinforced, thermoplastic organic sheets. An integrated 6-axis robot is abl eto load the tapes and sheets in the oven to transfer them into the mould.	vugresi@uwo.ca	519-661-2111 x 86975
Mechanical	Fraunhofer Project Centre for Composites Research	Injection Moulding Machine	Fiberforge, RELAY Station 1000	Possible to manufacture continuous fibre reinforced thermoplastic components with the dimentsions of 1m to 1m. Different part thicknesses and fibre orientations can be realized to create load adjusted lightweight structures. Double creel system: tape width range continuously variable between 50mm and 150mm using a tape thickness between 0.1mm and 0.4mm	vugresi@uwo.ca	519-661-2111 x 86975

Mechanical	Fraunhofer Project Centre for Composites Research	Fiber Performing		With this equipment, the fiber cutting, stacking, draping and forming of these textiles is completely automated. Offers economical production of dimensionally stable and complex 3D shaped preforms using simple, modular operational principles. Up to 250kN closing force. Capable of processing a wide range of areal fabric wights with roll widths up to 2.6 meters and performs up to 2.5 meters square projected area. Robotic handlign of individual fabric layers between cutting table, binder stationa dn draping belt. Optional variable spray binder application of either thermoplastic or thermoset binders. Simulation tools available to determine blank shape and fiber orientation.	vugresi@uwo.ca 519-661-2111 x 86975
Mechanical	Western Science Centre Room 54 (Laboratory for Stable Isotope Sciene)	Thermogravimetric and differential analyzer	Linseis	Custom designed; simultaneous TG-DT analyzer; combined vertical (1150°) and horizontal (1000°) heating systems. Best possible vacuum integrity for use in stable isotope analysis.	519-661-3881 Fred J Longstaffe flongsta@uwo.ca
Mechanical	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences Building Room 351)	Ultracentrifuge	Beckman Optima MAX	Capable of reaching speeds to 130,000 rmp. Ideal for pelleting of small particles that include viruses and subcellular organelles. Available rotors: MLS 50 Swinging-Bucket Rotor, MLA 80 Fixed Angle Rotor, MLA 130 Fixed Angle Rotor, TLN 100 Fixed Angle Rotor.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86946
Mechanical	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Isothermal Titration Calorimeter	MicroCal VP-ITC	Used for determination of thermodynamic parameters of ligand binding by proteins by measuring the heat generated or absorbed by a protein sample upon binding of substrate. Yield values for binding constants, reaction stoichiometry, enthalpy and entropy.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere Ibriere2@uwo.ca 519-661-2111 x85305
Mechanical	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Analytical ultracentrifuge	Beckman Optima XL-A	Versatile and accurate instrument for determinig the native molecular weight and hydrodynamic properties of a protein or other macromolecule. Can also be used to probe the molecular shape of proteins or other biomolecules in solution, as well as self-association or hetero-oligomeric interactions wihtin protein samples.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere Ibriere2@uwo.ca 519-661-2111 x85305

Mechanical	London Regional Proteomics	Differential Scanning	MicroCal VP-DSC	Used in the thrmodynamic analysis of protein	Dr. James Choy jchoy4@uwo.ca 519-661-3161
	Centre (Medical Sciences	Calorimeter		denaturation. Studing melting temperatures,	Lee-Ann Briere lbriere2@uwo.ca 519-661-2111
	Building Room 394)			thermodynamic parameters of denaturation, and	x85305
				cooperativity of melting can be studied in the range	
				of -10 to 130°C.	
Mechanical	London Regional Proteomics	Stopped flow system	BioLogic SFM-400	May be used for rapid kinetic analyses in conjuction	Dr. James Choy jchoy4@uwo.ca 519-661-3161
	Centre (Medical Sciences			with either the Jasco or the Fluorolog-3	Lee-Ann Briere lbriere2@uwo.ca 519-661-2111
	Building Room 394)			fluorescence instruments. Equipped with 4	x85305
				independently controlled syringes and provides	
				submilisecond mixing with dead times down to 0.6	
				ms.	
Mechanical	Western Paleomagnetic &	Magnetic susceptibility	Sapphire SI2b, 1994	Measures magnetic susceptibility. Measurements	Dr. Phil J.A. McCausland pmccausl@uwo.ca
	Petrophysical Laboratory	measurements		are usually made with respect to sample mass, but	
	(Western Sciences Centre,			can be made with respect to sample volume. If	
	Room 36)			sample density is known measuremnts can be	
				converted to volume-based susceptibility in cgs	
				units. Capable of Anisotropy of Magnetic	
				Susceptibility (AMS) measurements;	
Mechanical	Western Paleomagnetic &	Spinner magnetometer	Schonstedt SSM-2,	Measures the Natural Magnetic Remanence (NRM)	Dr. Phil J.A. McCausland pmccausl@uwo.ca
	Petrophysical Laboratory		1981	of a sample which is the permanent magnetization	
	(Western Sciences Centre,			that it has acquired in its history. The instrument	
	Room 36)			uses a six-spin configuration to revel intensity and	
				direction of the NRM. Possible to establish a	
				positive or negative polarity for the remanence	
				direction. Possible to check if the observed	
				magnetization is original or drill induced in core	
				samples.	
Mechanical	Western Paleomagnetic &	Grain density	Quantachrome	Measurements of Grain Volume using helium as	Dr. Phil J.A. McCausland pmccausl@uwo.ca
	Petrophysical Laboratory	measurement	Multipycnometer,	the inert gas to fill pore space in a sample. Sample	
	(Western Sciences Centre,		2006	volume can be calculated from a simple	
	Room 36)			experiment.	
Mechanical	Western Paleomagnetic &	Thermal Demagnetizer	Magnetic	Temperature controlled oven to demagnetize up to	Dr. Phil J.A. McCausland pmccausl@uwo.ca
	Petrophysical Laboratory		Measurements,	80 2.5 cm rock cores. Maximum temperature	
	(Western Sciences Centre,		MMTD-80, 1998	800°C. Can be used in conjunction with a d.c.	
	Room 36)			power supply to remagnetize specimens. Heating	
				can be done in air, argon or vacuum.	

Mechanical	Surface Science Western LL31	Microhardness Testing	LECO LM-100	Measure the hardness of materials. Using an	Mr. Brad Kobe	bkobe@uwo.ca	519-661-2111
			Microindentation	elongated Knoop indentor capable of measuring	Ext. 89203		
			Testser	the bulk hardness of metals, thin metal films and			
				surface layers such as decarberization. Applied load			
				can be adjusted from 10 grams to 1000 grams. The			
				size of the microhardness indents vary depending			
				on the material and applied load, but typically are			
				approximately 100 microns in length. This means			
				we can measure the hardness of very small areas.			

Mechanical	Surface Science Western LL13	Weathering Chamber Q-	Q-SUN, Q-SUNXE-3-	Simulates product demages such as crazing, hazing,	Dr. Sridhar Ramamurthy sramamur@uwo.ca
		SUN Xenon Test	HDSBSC	fading and yellowing from exposure to sunlight,	519-661-2111 Ext. 86870
		Chamber		heat and moisture. This chamber can reproduce	
				the damage caused by full-spectrum sunlight and	
				rain over a period of months or years outdoors in a	
				few days or weeks time. It utilizes three separate	
				xenon lamps for a large capacity. The Q-SUN Xe-3	
				tester's slide out specimen tray is 451mm x 718mm	
				and is useful for exposing large, three-dimensional	
				parts or components. The Xe-3 tester offers	
				standard humidity control, and spray, back spray	
				and chiller features. The dual spray capability	
				allows for a second liquid such as acid rain or soap	
				solutions, to be sprayed onto test specimens. The	
				following standard tests can be run with this	
				chamber: AATCC TM16, AATCC TM169, ASTM	
				C1257, ASTM C1442, ASTM C1519, ASTM C732,	
				ASTM C734, ASTM C793, ASTM D1148, ASTM	
				D1670, ASTM D2565, ASTM D3451, ASTM D4101,	
				ASTM D4303, ASTM D4355, ASTM D4434, ASTM	
				D4459, ASTM D4637, ASTM D4798, ASTM D4811,	
				ASTM D5019, ASTM D5071, ASTM D5383, ASTM	
				D5398, ASTM D5819, ASTM D6083, ASTM D6551,	
				ASTM D6577, ASTM D6662, ASTM D6695, ASTM	
				D6878, ASTM D7356, ASTM D750, ASTM D7869,	
				ASTM D882, ASTM D904, ASTM D925, ASTM	
				F1164, ASTM F1515, ASTM F2366, ASTM G151,	
				ASTM G155, GM 9125P, IEC 61345, ISO 105-B02	
				(EN) (DIN), ISO 105-B04 (EN) (DIN), ISO 105-B06	
				(EN) (DIN), ISO 105-B07 (EN) (DIN), ISO 105-B10	
				(EN) (DIN), ISO 11341 (EN) (DIN). ISO 12040, ISO	
				29664, ISO 4892-1 (EN) (DIN), ISO 4892-2 (EN)	
				(DIN), SAE J2412, SAE J2527, VW PV 1306, VW PV	
				3929, and VW PV 3930.	

Mechanical	Surface Science Western LL13	QUV Tester -	QUV, QUV/SPRAY/RP	Reproduces the damage caused by sunlight, rain	Dr. Sridhar Ramamurthy sramamur@uwo.ca
		Accelerated Weathering		and dew. It tests materials by exposing them to	519-661-2111 Ext. 86870
		Tester		alternating cycles of UV light and moisture at	
				controlled, elevated temperatures. To simulate	
				outdoor weathering, the QUV accelerated tester	
				exposes materials to alternating cycles of UV light	
				and moisture at controlled, elevated temperatures.	
				It simulates the effects of sunlight using special	
				fluorescent UV lamps. It simulates dew and rain	
				with condensing humidity and/or water spray.	
				Types of UV weathering damage include color	
				change, gloss loss, chalking, cracking, crazing,	
				hazing, blistering, embrittlement, strength loss and	
				oxidation. Two types of lamps are available with	
				our QUV weathering chamber. The UVA-340 lamps	
				give an excellent simulation of sunlight in the	
				critical short wavelength region from 365 nm down	
				to the solar cut-off of 295 nm. The UVB-313 lamps	
				maximize acceleration utilizing short-wave UV that	
				is more severe than the UV normally found at the	
				earth's surface. Consequently, these lamps may	
				produce unrealistically severe results for some	
				materials. UVB-313 lamps are most useful for QC	
				and R&D applications, or for testing very durable	
				materials. The following test standards are	
				applicable for our QUV weathering chamber:	
				AAMA 624, AATCC TM186, ASTM C1257, ASTM	
				C1442, ASTM C1501, ASTM C1519, ASTM C732,	
				ASTM C734, ASTM C793, ASTM D1148, ASTM	
				D1670, ASTM D3424, ASTM D3451, ASTM D4101,	
				ASTM D4329, ASTM D4434, ASTM D4587, ASTM	
				D4674, ASTM D4799, ASTM D4811, ASTM D5208,	
				ASTM D5894, ASTM D6577, ASTM D750, ASTM	
				D882, ASTM D904, ASTM D925, ASTM E3006,	
				ASTM F1164, ASTM F1945, ASTM G151, ASTM	
				G154, EN 13523-10 (DIN), GM 9125P, IEC 61215,	
				IEC 61345, ISO 11507 (EN) (DIN), ISO 29664, ISO	
	1			4902 1 (ENI) (DINI) ICO 4902 2 (ENI) (DINI) and CAE	

Mechanical	Surface Science Western LL13	Salt Spray Q-Fog Cyclic	Q-Fog, CRH600HSC	Cyclic salt spray testing was developed to simulate	Dr. Sridhar Ramamurthy sramamur@uwo.ca
		Corrosion Tester		exposures to outdoors and cyclic corrosion testing	519-661-2111 Ext. 86870
				was found to provide structure, morphology, and	
				corrosion rate results similar to those from	
				obtained outdoor exposures. In our Q-FOG cyclic	
				corrosion tester, the specimens are exposed to a	
				series of different environments in a repetitive	
				cycle that mimics outdoors. Simple cycles, such as	
				Prohesion, may consist of cycling between salt fog	
				and dry conditions. More sophisticated automotive	
				methods may call for multi-step cycles that	
				incorporate humidity, along with salt spray and dry-	
				off. With our Q-FOG chamber, it is possible to cycle	
				through all of the most significant corrosion	
				environments. In addition, more complex	
				exposure cycles can be manually programmed in	
				our chamber and we will be able to run these tests	
				to meet a wide variety of industry requirements.	
				Numerous accelerated corrosion tests can be	
				performed: ASTM B117, ASTM D1654, ASTM	
				D1735, ASTM D2247, ASTM D2803, ASTM D3451,	
				ASTM D4585, ASTM D5894, ASTM D6577, ASTM	
				D6675, ASTM G85 (Prohesion Test), BS 2011 Pt2.1	
				Ka, BS 2011 Pt2.1 Kb, BS 3900 F12, BS 5466 1, BS	
				7479, DIN 50017, DIN 50021, Ford CETP 00.00-L-	
				467, Ford FLTM BI 103-01, Ford FLTM BI 104-01,	
				Ford FLTM BI 104-02, Ford FLTM BI 123-03, Ford	
				FLTM BQ 105-01, GM 4298P, GM 4465P, GM	
				9540P, GMW 14729 (Option A), GMW 14872,	
				GMW 3286, Honda HES D6001 sec 4.3, Honda HES	
				D6501 sec 3.15.1, Honda HES D6501 sec 3.15.2, IEC	
				60068-2-11, ISO 16701, ISO 60082-2-52, ISO 6270-	
				2, ISO 7253, ISO 9227, JIS H8502 Se. 7.3, JIS Z2371	
				Sect. 7.2.3, Mazda MES MN601,	
				Mazda MES MN601, MCT-2M, Mazda MES MN601,	
				MCT-3M, MIL-STD-202 (101E), Renault ECC1 - D17	
				2028, SAE J1959, SAE J2334, Toyota TSH 1555G,	
			1	Value STD 1027 1275 Value STD 422 0014 and	1

Mechanical	Surface Science Western LL13	Differential Scanning	Mettler Toledo DSC 3.	to measure enthalpy changes due to changes	Dr. Sridhar Ramamurthy sramamur@uwo.ca
		Calorimeter (DSC)	22790	in the physical and chemical properties of a	519-661-2111 Ext. 86870
				material as a function of temperature or time.	
				Allows to identify or compare materials and to	
				characterize them with regard to their structure or	
				use.	
				Temperature range: –100 to 700 °C	
				Atmosphere: nitrogen or oxygen gas	
				Heating rate: 0.02 to 300 °C/min	
				Cooling rate: 0.02 to 50 °C/min	
				Selected Applications in Industry:	
				Measurement of characteristic temperatures of	
				materials (e.g., melting, crystallization, glass	
				transition)	
				Identification or comparison of solids, powders,	
				fibres, and viscous samples such as pastes, creams,	
				or gels	
				Investigation of chemical reactions and kinetics	
				(e.g., how long a material takes to cure (cross-link),	
				vulcanization, influence of stabilizers, plasticizers,	
				or other additives)	
				Thermal stability measurements (e.g., oxidation	
				induction time (OIT), oxidation onset temperature	
				(OOT))	
Mechanical	Surface Science Western LL13	Thermogravimetric	Mettler Toledo TGA 2,	Measures the mass of a sample while the sample is	Dr. Sridhar Ramamurthy sramamur@uwo.ca
		Analysis (TGA)	886	heated or cooled in a defined atmosphere. The	519-661-2111 Ext. 86870
				main use of TGA is to characterize materials with	
				regard to their composition	
				Temperature range: room temperature to 1100 °C	
				Atmosphere: nitrogen air or oxygen gas	
				Heating rate: 0.02 to 250 °C/min	
				Sample mass range: $<1 \text{ g}$ (typically 10–15 mg used)	
				Selected Applications in Industry:	
				Characterization of the thermal properties of	
				materials such as plastics, elactomers and	
				thermosote mineral compounds and coramics as	
				well as for chomical products	
				Measurement of composition (e.g. organics	
				carbon black filler) nurity decomposition	
				reactions decomposition temporatures and	
				absorbed moisture content	
Machanical	Wastern Daleemagnetic 9	Domagnoticar	Sanbhira Instrumanta	ausorided moisture content	Dr. Phill A. McCaudand amonaud Suma ca
wiechanical	Nestern Paleomagnetic &	Demagnetizer	Saprinire instruments	constillation of escillageones in disited construction	Dr. Philip.A. Miccausiand princeausi@uWo.ca
			51-4 AF, 2008	capability of oscilloscopes in digital communication	
	Livvestern Sciences Centre	1	1	lang high speed digital circuits.	

Microscopy	Western Nanofabrication Facility	Scanning Electron Microscope	Leo 1540XB FIB/SEM	Equipped with an X-ray detector. Focused Ion Beam (FIB) enables in-situ cross sectioning for thickness measurement and elemental analysisof structures below the surface. Can also be used for the preparation of thin samples for Transmission Electron Microscopy (TEM) analysis.	nanofab@uwo.ca
Microscopy	Western Nanofabrication Facility	Scanning Electron Microscope	Leo 1530 SEM	Can provide valuable insight into a variety of materials, from metals to minerals to biological structures	nanofab@uwo.ca
Microscopy	Western Nanofabrication Facility	Microscope	Zeiss Axioskop	Inspection microscope with camera	nanofab@uwo.ca
Microscopy	Biotron	Confocal Microscope: Zeiss LSM 5 Duo	Zeiss LSM 5 Duo	Multipurpose confocal workstation. Delivers true 5D capability (X,Y,Z time and λ) by combining 3 instruments into one	biotron_microscopy@uwo.ca
			LSM 510	Multichannel point scanning offers 10 optically tunable laser excitation wavelength, variety of beamsplitters and filters. Detection ranging from UV to near IR.	biotron_microscopy@uwo.ca
			LSM 5 Live detector	Beam shaper for rapid laser LINE scanning to capture live cell processes. 95% detection efficiency. A live cell stage is available for maintaining sensitive cell culture samples in controlled temperature, humidity and CO2 conditions.	biotron_microscopy@uwo.ca
			LSM 5 Meta Detector	Separation and acquisition of 32 spectral channels in only 1.2 seconds. A built-in spectral database, automatic component extraction and linear unmixing technology for separation of fluorochromes. Performs emission fingerprinting. Characterizes unknown fluorescence signals through spectral analysis.	biotron_microscopy@uwo.ca
Microsopy	Biotron	Electron Microscope	Philips 420	Equipped with a LaB6 filament and accelerating voltages up to 120KV, especially suitable for nanomaterials. AMT4000 camera. Equipped with an EDAX Genesis X-ray microanalysis system for materials elemental characterization. Magnification range of 46x to 820,000x	biotron_microscopy@uwo.ca

Microscopy	Biotron	Electron Microscope	Philips CM10	Equipped with a LaB6 Filament and accelerating voltages up to 100kV. Excellent system for both biological and material imaging including plant cells, viruses, fimbriae and noparticles, as well as structure analysis and immunoelectron microscopy. Magnification range of 18x to 450,000x; Resolution 3 Angstrom	biotron_microscopy@uwo.ca
Microscopy	Biotron	Compound Fluorescence	Zeiss, Imager Z1	Ideal imaging solution for a wide variety of samples with superb optics. 8 channels of fluorescence plus bright field, dark field, phase and DIC imaging. Magnification from 2.5x to 100x. High sensitivy fluorescence and high resolution colour cameras. Automated Z-stack imaging with extended depth of focus module to bring all layers into sharp relief. Stitchign tiling mode for imaging whole tissues . 4D rendering software for 3D puls time rendering.	biotron_microscopy@uwo.ca
Microscopy	Biotron	Stereo Microscope	Zeiss, StereoLumar V12	Can provide a true stereo image at up to 125x magnification with sub-micrometer resolution in three fluorescent channels. It can image in both transmitted and reflected light modes. Perfect for developmental biology projects, especially those looking at fluorescent protein expression in whole organisms or tissues.	biotron_microscopy@uwo.ca
Microscopy	Biotron	Variable Pressure SEM	Hitachi, S-3400N Variable Pressure SEM	Equipped with a turbo-molecular pump for quick pump down times and reliable high vacuum performance. Suitable for imaging biological and geological specimens. Offers: high vacuum mode with both backscattered and secondary electron detectors; X-ray analysis; Peltier cooled stage and high resolutuion digital images. Magnification up to 300,000x. Can handle specimens up to 200mm in diameter. Can image wet or oily samples without standard SEM processing protocols. Equipped with an optical freezing stage that can work with extremely wet or temperature sensitive samples. Also useful for freeze fracture techniques that reveal detail in lipid containing materials.	biotron_microscopy@uwo.ca

Microscopy	EPMA Lab WSC RmG14	Field Emission Electron Probe microanalyzer	JOEL, JXA-8530F Hyperprobe, 2013	Capable of non-destructive quantitative analysis of micron-scale volumes for elements from B-U, with detection limits in the 100s range. Equipped with 5 wavelength dispersive X-ray spectrometeres, including H-type spectrometer and L-type spectrometer for trace elemental analysis and specialized analyzing crystals for light-elemental analysis. Also includes detectors secondary electron imaging, backscattered electron imaging, panchromatic cathodoluminescence imaging, silicon drift energy dispersive X-ray spectrometer. Can be used to map elements within a material and reveal inhomogeneities. Rapid identification of mineral phases.	epma@uwo.ca Dr. Gordon Osinski gosinski@uwo.ca Dr. Robert Linnen rlinnen@uwo.ca
Microscopy	EPMA Lab WSC RmG14	Compound Microscope	Olympus BX51	This polorizing microscope can be used for identification of isotropic and anisotropic materials, forensic analysis, thin film/polymer/crystal identificationa dn extraneous particulates. Equipped with a digital camera.	epma@uwo.ca Dr. Gordon Osinski gosinski@uwo.ca Dr. Robert Linnen rlinnen@uwo.ca
Microscopy	EPMA Lab WSC RmG14	Compound Microscope	Nixon LV100PL	Accomplishes advanced polarizing microscopy under both diascopic and episcopic illumination. Uses a12V50W light source that provides brighter illumination and sharp images with high S/N ratios. Equipped with digital camera	epma@uwo.ca Dr. Gordon Osinski gosinski@uwo.ca Dr. Robert Linnen rlinnen@uwo.ca
Microscopy	EPMA Lab WSC RmG14	Binocular Microscope	Nikon, SMZ1500	One of Nikon's most advanced stereomicroscopes. Covers a zoom range from 0.75x to 11.25x and allows to see and photograph speciment from macroviews to high-magnification micro visualization. High intensity illuminator.	epma@uwo.ca Dr. Gordon Osinski gosinski@uwo.ca Dr. Robert Linnen rlinnen@uwo.ca
Microscopy	EPMA Lab WSC RmG14	Optical Scanner	Cannon Canonscan 8800F	Relies on a LED light source and generic profile to deliver great results from negatives, slides and prints. High-resolution scans of thin sections/grain mounts/core	epma@uwo.ca Dr. Gordon Osinski gosinski@uwo.ca Dr. Robert Linnen rlinnen@uwo.ca

Microscopy	London Regional Proteomics	Mororized Inverted	Nikon Eclipse Ti-E	Equipped with InVivo Scientific heated incubation	Ms. Victoria Clarke Ms. Kristina Jurcic
	Centre (Functional Proteomics	Microscope		chamber with adjustable temperature and Co2	fpf@uwo.ca 519-661-2111 x86945
	Facility Medical Sciences			levels; Prior Scientific Optiscan Motorized XY stage	
	Building Room 351)			for multi point imaging; Prior Scientific Lumen 200	
				metal halide light for fluorescence; Prior Scientific	
				motorized filter wheels for automated	
				multichannel fluorescence; Nikon digital Sight Qi1	
				cooled monochrome CCD for quantitative	
				fluorescece imaging; 20x, 40x and 100x objectives;	
				NIS-Elements Advanced Research 6D software for	
				timelapse, multipoint multichannel fluorescence	
				with FRET analysis module Anit-vibration table;	
				filter sets: BF, DAPI, FITC, TRITC and ECFP, EYFP,	
				mcherry	
Microcoon	Wastern Science Centre Deem	Mieroscono	Cathadaluminasaanaa	Used to identify multiple phases (coning in	F10 661 2001 Fred Llengetaffe
wicroscopy	Western Science Centre Room	wiicroscope	Cathodoluminescence	used to identify multiple phases/zoning in	S19-661-3881 Fred J Longstatte
	S4 (Laboratory for Stable			carbonate and altered granitoid rocks.	nongsta@uwo.ca
	isotope science)		Fluorescence	Used to determine micro-porosity within rocks	519-661-3881 Fred J Longstaffe
					flongsta@uwo.ca
			Petrographic	Used for mineral identification, mineral	519-661-3881 Fred J Longstaffe
				photography	flongsta@uwo.ca
Microscopy	Surface Science Western LL31	Compound Microscope	Zeiss, Axioplan	Optical microscope images of microelectronic	Ms. Heather Bloomfield hbloomf@uwo.ca 519-
				devices at various magnifications. Capable of	661-2111 Ext. 86751
				magnifications ranging from 6.5X to 1000X,	
				interfaced to a high resolution colour digital	
				camera that allow capture of digital images.	
				Imaging of cross sections, microstructure from	
				etched metallurgical cross-sections, film thickness,	
				layer thicknesses of cross-sections, imaging of	
				defects on surfaces.	

Microscopy	Surface Science Western LL31	Scanning Auger Microscopy (SAM)	Physical Electronics Model 710 Field Emission Scanning Auger	High-resolution secondary electron imaging, < 4 nm spatial resolution. Small-spot Auger analysis, < 8 nm spatial resolution. Floating ion gun enables fast sputtering with least damage and charge neutralization. Survey scan analysis of elements from Li to U at outer 0.5 – 5 nm of the surface. Depth profiling (Ar+ ion gun, 50 ev to 5 kV). Surface-sensitive mapping to determine the presence and spatial distribution of elements at the very outer surface.Single and multi-point analysis. Can accommodate samples of 50 mm in diameter and 1 cm tall. Auger analysis can be conducted on metals and alloys, semiconductors, minerals, polymers and glasses. Charge neutralization can be utilized for analyzing insulating samples.	Dr. Sridhar Ramamurthy sramamur@uwo.ca 519-661-2111 Ext. 86870
Microsopy	Surface Science Western LL07	Confocal Laser Scanning	Zeiss Axio Imager, Z2m, LSM800	Uses laser light (405 nm wavelength) and an adjustable aperture to optically produce thin (nm to um) focal slices to optically section a sample. By changing the distance between the sample and the objective lens, through finely controlled steps in the Z direction, and by scanning the laser in the X/Y direction, an image stack is created with each pixel of each slice containing intensity information about the investigated surface. System includes C-Epiplan- Apochrome Objectives: 5x, NA 0.2; 10x, NA 0.4; 20x, NA 0.4 LD; 20x, NA 0.7; 50x, NA 0.55 LD; 50x, NA 0.95, Piezo measured motorized stage, Brightfield and Circular-DIC reflector cubes and a TIC filter.	Dr. Sridhar Ramamurthy sramamur@uwo.ca 519-661-2111 Ext. 86870

Microscopy/Spectroscop	Surface Science Western LL31	Hitachi SU8230 Regulus	Hitachi, SU8230	High resolution images of surface topography, with	Mr. Brad Kobe	bkobe@uwo.ca	519-661-2111
у		Ultra High-Resolution	Bruker, D12489	excellent depth of field are produced with a highly-	Ext. 89203		
		Field Emission SEM		focused, scanning electron beam. Capable of			
				obtaining some qualitative elemental information.			
				SEM accompanied by X-ray analysis, is relative			
				rapid, inexpensive, and non-destructive approach			
				to surface analysis. Imaging Detectors: 1) Lower			
				secondary electron detector for topographic			
				imaging, 2) Upper secondary electron detector for			
				high resolution with E x B filter, 3) Top detector			
				with energy filtration, 4) In-lens backscattered			
				secondary electron detector (BSE), 5) Retractable			
				backscattered secondary electron detector (PD-			
				BSE), 6) BF-STEM and variable collection angle DF-			
				STEM detector. Capable of light element detection			
				from carbon to uranium; Fast mapping of rough			
				surfaces with no shadowing; Low voltage analysis			
				at high magnification; Quantitate mapping,			
				particles analysis and phase analysis.			
Microscopy	Surface Science Western LL31	Hitachi SU3900 Large	Hitachi, SU3500	High resolution images of surface topography, with	Mr. Brad Kobe	bkobe@uwo.ca	519-661-2111
		Chamber Variable	Oxford, Aztec	excellent depth of field are produced with a highly-	Ext. 89203		
		Pressure SEM combined		focused, scanning electron beam. Capable of			
		with an Oxford ULTIM		obtaining some qualitative elemental information.			
		MAX 65 SDD X-ray		SEM accompanied by X-ray analysis, is relative			
		analyzer		rapid, inexpensive, and non-destructive approach			
				to surface analysis. Capable of elemental analysis			
				from carbon to uranium; Semi-quantitative analysis			
				with detection limits of ~ 0.1 weight % for most			
				elements; Linescans and elemental mapping.			

Microscopy	Surface Science Western LL31	Hitachi SU3500 Variable	Hitachi, SU3500	High resolution images of surface topography, with	Mr. Brad Kobe bkobe@uwo.ca 519-661-2111
		Pressure SEM combined	Oxford, Aztec	excellent depth of field are produced with a highly-	Ext. 89203
		with an Oxford AZtec X-		focused, scanning electron beam. Capable of	
		Max50 SDD X-ray		obtaining some qualitative elemental information.	
		analyzer		SEM accompanied by X-ray analysis, is relative	
				rapid, inexpensive, and non-destructive approach	
				to surface analysis. Capable of elemental analysis	
				from carbon to uranium; Semi-quantitative analysis	
				with detection limits of ~ 0.1 weight % for most	
				elements; Linescans and elemental mapping. The	
				Zone II cleaner uses a combination of ultraviolet	
				(UV) and ozone to remove hydrocarbons from a	
				sample surface, without any damage to the sample	
				surface. For routine imaging and EDX analysis a thin	
				coating of carbon or gold coating can be used,	
				while chromium or iridium can be used for ultra-	
				high resolution imaging.	
Microccopy	Surface Science Western LL31	X-Ray Micro Computed	Zeiss, Xradia 410	Non-destructive 3D imaging technique (4-D with	Ivan Barker and Sridhar Ramamurthy
		Tomography	Versa	time-based measurements) that uses a highly	
				energetic X-Ray beam to create a series of 2D	
				projections, whose greyscales vary with the	
				volume's internal density and atomic number	
				variations. These projections are reconstructed to	
				create a virtual 3D model, allowing users to "see"	
				inside the sample without preparing, sectioning or	
				destroying the sample. Minimum spatial resolution	
				of 0.9 μ m and a minimum voxel size of 100 nm at	
				larger working distances; Automated objective	
				carousel, with objectives: 0.4x, 4x, 10x, 20x:	
				Advanced absorption and phase contrast capability	
				(for soft or low atomic number materials)	
				overcomes the limitations on traditional computer	
				tomography; Vertical stitching mode enables the	
				analysis of taller samples by joining tomographies	
				from different sections of the sample; The in-situ	
				tensile stage (500 N) enables measurements while	
				the samples are under tensile or compression	
				stresses.	

Microscopy	The Zircon and Accessory Phase Laboratory (B&G Rm1060)	SEM (Secondary Electron Imaging)	Hitachi SU6600 FEG- SEM Inca X-Max EDS Inca Wave WDS Gatan ChromaCL HKL EBSD CNT-MC Spark-3 EPD Optical Imaging Hitachi S2500 SEM	Secondary Electron Imaging microscope that images the sample surface by scanning it with high energy beam of electrons up to up to350,000x (Topography). Provides information about the sample's surface topography, composition and properties such as conductivity. Detection modes are Backscatter Electron Imaging, Energy Dispersive Spectrometry, Wavelength Dispersive Spectrometry, Nano-scale High resolution Electron Backscatter Diffraction, Colour Cathodoluminescence, Scanning Transmission Electron Microscopy	Dr. Desmond Moser zaplab@uwo.ca 1-519-661-2111 ext. 88397 (ZAPLab) or ext. 87873 (FEG-SEM Room)
Microscopy	Surface Science Western LL31	Atomic Force Microscopy	Park Systems XE-100, PSIA	Uses fine tip to map surface morphology and mechanical and chemical properties through an interaction between the tip and surface. Used exclusively to study polymer surface structures and properties. Topographic images at a resolution on the nanometer scale and surface energy changes due to surface modification by UV/ozone treatment can be measured. Topographic images with a height resolution of ~0.1nm and lateral resolution down to nanometers. Phase imaging is especially powerful in revealing dispersions of additives in polymer composites. Friction force images to distinguish different materials, phases, and chemical properties.	Dr. Heng-Yong Nie hnie@uwo.ca 519-661-2111 Ext. 86734
Microscopy	Surface Science Western LL31	Contact Angle Goniometry	DSA30E, Drop Shape analyzer	Used for accurate measurements of surface free energy (SFE) and contact angle. Measurements capabilities: Contact angle measurements between a liquid and a solid; Surface-free energy from contact angles of several test liquids; Static, advancing and receding contact angles; Surface tension; Assessment of surface tension using the Pendant Drop Method; Analysis on inclined surfaces.	Ms. Mary Jane Walzak mwalzak@uwo.ca 519- 661-2111 Ext. 86868 (retiring in May 2020) Ms. Becky Sarazen rebecca.sarazen@uwo.ca 519- 661-2111 Ext. 86713

Microscopy	Surface Science Western LL31	Stereo Microscope	Wild, Heerbrugg	Optical microscope images of microelectronic devices at various magnifications. Capable of magnifications ranging from 6.5 X to 1000 X, and interfaced to a high-resolution colour digital camera that allow capture of digital images.	Ms. Heather Bloomfield hbloomf@uwo.ca 519- 661-2111 Ext. 86751
Microscopy	Surface Science Western LL31	Digital Microscope	Keyence, VHX-S660E	Optical microscope images of microelectronic devices at various magnifications. Capable of magnifications ranging from 6.5 X to 1000 X, and interfaced to a high-resolution colour digital camera that allow capture of digital images.	Ms. Heather Bloomfield hbloomf@uwo.ca 519- 661-2111 Ext. 86751
Microscopy	Surface Science Western LL31	Stereo Microscope	Zeiss, Discovery V8	Optical microscope images of microelectronic devices at various magnifications. Capable of magnifications ranging from 6.5 X to 1000 X, and interfaced to a high-resolution colour digital camera that allow capture of digital images.	Ms. Heather Bloomfield hbloomf@uwo.ca 519- 661-2111 Ext. 86751
Microscopy	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences Building Room 351)	IR imaging system	Li-COR Biosciences, Odyssey	Infrared imaging system that uses two independent infrared fluorescent channels for detection, enabling simultaneous two-colour target analysis.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86948
Nanofabrication	Western Nanofabrication Facility	Deposition	Angstrom Electron Beam Evaporation	Pristine thin film deposition of metals.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Deposition	Edwards Auto500 Magnetron Sputtering	Three magnetrons for deposition of metal, metal oxide and magnetic targets.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Deposition	STS Plasma Enhanced Chemical Vapour Deposition	Deposition of silicon nitride an silicone oxide.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Deposition	IKO Electroplating Bench	Uniform copper deposition on a 4 inch wafer.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Deposition	Filgen OPC80T Osmium Plasma Coater	Deposition of an amorphous layer of osmium on samples requiring a conductive layer for SEM analysis.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Lithography	Neutronix-Quintel NX4006 Mask Aligner	An integrated optical-mechanical, pneumatic- electrical machine that aligns and exposes substrates coated with photoresist. Uses physical mask inscribed onto high quality transparency or chromium on glass. The pattern on the mask is reproduced by means of UV irradiation onto a photoresist.	nanofab@uwo.ca

Nanofabrication	Western Nanofabrication Facility	Lithography	Karl Suss MA6 Mask Aligner	Performs high resolution photolithography. Offers flexibility in the handling of irregularily shaped substrates of differing thickness. Uses a physical mask inscribed onto high quality transparency or chromiumon glass. The pattern on the mask is reproduced by means of UV irradiation onto a photoresist.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Lithography	Zeiss 1530 e-beam Lithography	Micro and nanocharacterization by electgron beam induced crurrent technique. Focused electron beam scans a photopolymer surface to reproduce a digital CAD plan. New Raith System is optimized to inscribe small features over large surfaces using as stiching mode.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Lithography	Solitec 5110 Spin Coater	Spin coater for photoresist application	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Lithography	CEE 200 Spin Coater	Spin coater for photoresist application	nanofab@uwo.ca
Nanofabrication	Wester Nanofabrication Facility	Lithography	Yield Engineering YES- 3TA HMDS Oven	Photolithography adhesion promoter	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Lithography	Innopsys Innostamp	Allows to transfer and pattern of an "ink" onto a surface. A stamp is first made using a rubber compound to reproduce a positive 3D matrix. The stamp is brought to contact with the substrate onto which the pattern ink is transferred.	nanofab@uwo.ca
Nanofabrication	Western Nanofabrication Facility	Etching	Trion Orion Reactive Ion Etcher	Room temperature oxygen plasma. Silicone/glass substrates etching.	nanofab@uwo.ca
Spectroscopy	London Regional Proteomics Centre (Functional Proteomics Facility Medical Sciences Building Room 351)	Multilabel Counter	PerkinElmer VICTOR 1420-10	Used for fluorometry, luminometry, photometry, TR-fluorometry and fluorescence polarization. Includes 2-channel liquid injector to start or terminate a process.	Ms. Victoria Clarke Ms. Kristina Jurcic fpf@uwo.ca 519-661-2111 x86947
Spectroscopy	Gillies Lab MSA 3210	Fluorimeter	Photon Technology International, 814, 2007	Measures steady state fluorescence and phosphoresence, phosphorescence lifetimes, luminescence, bioluminescence, and chemi- luminescence	E. Gillies egillie@uwo.ca
Spectroscopy	Gillies Lab MSA 3210	UV-vis Detector	Varian, Cary300 Bio, 2007	Measures Absorbance and Transmittance intensity through the UV-vis spectrum. Can be used for temperature controlled analysis. Equipped with multicell holders	E. Gillies egillie@uwo.ca
Spectroscopy	Gillies Lab MSA 3210	Zetasizer	Malvern, Nano-ZS, 2008	Size particle, Molecular Weight and Zeta potential Analysis	E. Gillies egillie@uwo.ca

Spectroscopy	J. B. Stothers NMR facility	NMR Spectrometer	Bruker, Avance III HD 400, 2017	Oxford AS400/54 magnet equipped with 5mm SmartProbe capable of Auto Probe Tuning and a 24 sample changer. Capable of collecting data on routine nuclei C13, H1, F19 and P31 as well as less common odd nuclei. Running the TopSpin3.5 / Icon5 software.	Dr. Mathew Willans chemnmr@uwo.ca 519-661-2111 x82905
Spectroscopy	J. B. Stothers NMR facility	NMR Spectrometer	Varian, Inova400, 2000	Oxford AS400/54 magnet equipped with 5mm Direct Detection Autoswitchable HFCP Manual probe. Capable of collecting data on common and odd nuclei and variable temperature experiments ranging between -80C to +130C. Running the VnmrJ 4.2 MI software.	Dr. Mathew Willans chemnmr@uwo.ca 519-661-2111 x82905
Spectroscopy	J. B. Stothers NMR facility	NMR Solid State Spectrometer	Varian, Infinity Plus 400, 2000	Wide-bore magnet used for solid state NMR experiemtns. 3-channel spectrometer with two high-power broadband amplifiers, plus high-power proton and fluorine amplifiers. Data acquisition at - 120°C to 250°C.	Dr. Mathew Willans chemnmr@uwo.ca 519-661-2111 x82905
Spectroscopy	J. B. Stothers NMR facility	NMR Spectrometer	Varian, 1600, 2000	Oxford AS600/51 magnet equipped with 5mm Direct Detection AutoX-DB manual probe. Capable of collecting data on common and odd nuclei and variable temperature experiments ranging between -30C and +130C. Running VnmrJ 4.2 MI software.	Dr. Mathew Willans chemnmr@uwo.ca 519-661-2111 x82905
Spectroscopy	Western Science Centre Room 54 (Laboratory for Stable Isotope Sciene)	FTIR	Bruker Vector 22	Press for making KBr pellets	519-661-3881 Fred J Longstaffe flongsta@uwo.ca
Spectroscopy	Surface Science Western LL07	Fourier Transform Infrared Spectroscopy	Bruker Tensor II system with Hyperion 2000 microscope	Through recording the absorbance spectrum and showing the sample absorbed wavelengths, details about the molecular structure of the sample can be determined. Particularly useful in analyzing and identifying organic and some inorganic compounds. Samples can be as small as 20um and sensitive to concentrations greater than 3-5%. Hyperion 2000 microsope equipped with micro-attenuated total reflectance, imaging capabilities, a mapping stage with mapping capabilities, grazing angle objective with polarizer, transmission/reflection.	Ms. Mary Jane Walzak mwalzak@uwo.ca 519-661 2111 Ext. 86868 (Will be retiring in May 2020) Ms. Becky Sarazen rebecca.sarazen@uwo.ca 519-661-2111 Ext. 86713

Spectroscopy	Surface Science Western LL06	Laser Raman	Renishaw InVia Reflex	Useful for material identification with observing the	Ms. Mary Jane Walzak mwalzak@uwo.ca 519-661-
		Spectroscopy	Raman Spectrometer	vibrational, rotational, and other low-frequency	2111 Ext. 86868 (Will be retiring in May 2020)
				modes in a system. Three wavelengths are	Thalia Standish thalia.standish@uwo.ca 519-661
				available 785nm, 633nm and 514nm and two	2173
				gratings, 1800 and 1200 l/mm. Also equipped with	
				polarizer and half waveplate for each laser. Capable	
				of analysis of powders, liquids and films and depth	
				profiling.	
Spectroscopy	Surface Science Western 1131	Surface Profilometry	KLA Tencor P-17	Measures the surface topographical features.	Dr. Heng-Yong Nie hnie@uwo.ca 519-661-
opeon occopy			Surface Profiler	covering the roughness and waviness estimation	2111 Ext. 86734
				and step height measurements. Capable for	
				obtaining a 3D topographic image of the surface	
				from which any scan lines can be isolated for	
				analysis. System is capable of roughness	
				quantification for surface finishing evaluation; SIMS	
				crater depth measuremnt; Thickness measurement	
				for thin metal and polymer films; Radius of	
				curvature measurements; 3D surface morphology	
				for detection of defects and corrosion and general	
				surface imaging. Profilometer allows us to measure	
				height differences from 5 nm to 1 mm. The	
				instrument can handle samples as large as 8 inches	
				in diameter and as heavy as 5 lbs.	
Spectrometry	Western Science Centre G49	Ruthford Backscattering	941	RBS is most commonly used non-destructive	(519) 661-2111 x 83803 Jack Hendriks
		Spectrometry		nuclear analytical methods. Widely used for study	jhendrix@uwo.ca Lyudmila Goncharova
				of thin layers and for study of multilayer systems	lgonchar@uwo.ca Peter Simpson
				with thickness from nm to μ m. RBS is very suitable	psimpson@uwo.ca
				for elemental depth analysis. From such	
				measurement it is possible to determine, with	
				some limitations, both the atomic mass and	
				concentration of elemental target constituents as a	
				function of depth below the surface.	
				Measurement with this method may be performed	
				on amorphous as well as crystalline materials. H	
				and He beams are supplied by the 1.7 MeV	
				Tanderm accelerator. A dedicated ion scattering	
				chamber houses a 4-axis manipulator and two	
				surface barrier detectors. Data acquisition is	
				possible both in random and channeling	
				geometries.	

Spectrometry	Western Science Centre G49	Elastic Recoil Detection Analysis		ERD is a ion beam analysis technique for quantitative analysis of light elements in solids. Non-destructive nuclear analytical method for depth profilight of light elements in thin layers and multilayer systems. Measurements can be performed on amorphous as well as crystalline materials.	(519) 661-2111 x 83803 Jack Hendriks jhendrix@uwo.ca Lyudmila Goncharova lgonchar@uwo.ca Peter Simpson psimpson@uwo.ca
Spectrometry	Western Science Centre G49	Medium Energy Ion Scattering		MEIS is used to determine structural and compositional properties of surfaces and thin films. Dedicated UHV chamber contains a VG 6-axis sample manipulator (3 translations and 3 rotations). The MEIS technique utilized a toroidal electrostatic energy analyzer (TEA, High Voltage Engineering Europa) with an energy resolution (delta E/E) of 0.003). The position sensitive detector accepts ions scattered over a range of up to 30° with a precision of 0.2°. A spectrum of scattering events versus scattered energy and angle is collected in this experiment. Double alignment of incident and scattered ions with the crystal lattice allows high resolution measurement of the near surface structure.	(519) 661-2111 x 83803 Jack Hendriks jhendrix@uwo.ca Lyudmila Goncharova lgonchar@uwo.ca Peter Simpson psimpson@uwo.ca
Spectroscopy	Surface Science Western LL31	X-ray Photoelectron Spectroscopy (XPS) Supra	Kratos AXIS Supra Spectrometer, MI- 600R04	A method characterizing surface composition. Analysis depends upon the measurement of the energies of photoelectrons that are emitted from atoms when they are irradiated by soft X-ray photons (1 – 2 keV).Capable of In-situ fracturing at low temperature; Sample heating (800°C and cooling (-100°C); Variable angle sample orientation; High precision automated stage; Depth profiling in with both monoatomic Ar+ and gas cluster beams (up to Ar3000+); Interfaced to a glove box for chemical preparation under inert atmosphere; Analysis of sample sizes up to 30 mm x 75 mm and up to 10 mm thick; Elemental and chemical imaging, small spot analysis; Multiple X-ray sources including monochromatic AI K α , monochromatic Ag L α , He(I) and He(II); Ion scattering spectroscopy (ISS) equipped.	Dr. Mark Biesinger biesingr@uwo.ca 519-661- 2111 Ext. 86701

Spectroscopy	Surface Science Western LL31	X-ray Photoelectron	Kratos AXIS Nova	A method characterizing surface composition.	Dr. Mark Biesinger biesingr@uwo.ca 519-661-
		Spectroscopy (XPS)	Spectrometer	Analysis depends upon the measurement of the	2111 Ext. 86701
				energies of photoelectrons that are emitted from	
				atoms when they are irradiated by soft X-ray	
				photons $(1 - 2 \text{ keV})$. Capable of Variable angle	
				sample orientation: High precision automated	
				stage: Depth profiling: Sample platens can hold	
				numerous samples fo varying sizes: Elemental and	
				chemical imaging: Monochromatic Al Kα X-ray	
				source: MCP delay-line detector allowing for	
				scanned and sangshot data colletion: Transfer	
				vessel can be used to transfer samples in vacuum;	
				He(I) and He(II) ultraviolet source (UPS); Allows for	
				mounting of air sensitive samples in a glove box	
				and trasnfer under inert atmosphere.	
Spectroscopy	Western Nanofabrication	Profilometer	Tencor P7	Used to measure surface's profile in order to	nanofab@uwo.ca
	Facility			quantify its roughness.	
Spectroscopy	Western Nanofabrication	Ellipsometer	Woollam Ellipsometer	Measures materials thickness using the materials	nanofab@uwo.ca
	Facility			refractive index.	
Spectrometry	Western Science Centre G49	Particle-Induced X-ray		Determines the elemental make-up of a sample.	(519) 661-2111 x 83803 Jack Hendriks
		Emission		allows for solid samples to be analyzed without any	jhendrix@uwo.ca Lyudmila Goncharova
				pre-treatment and can detect many elements	lgonchar@uwo.ca Peter Simpson
				below 1ppm	psimpson@uwo.ca
Spectrometry	Western Science Centre G49	Nuclear Reaction		Method for the quantitative determination and	(519) 661-2111 x 83803 Jack Hendriks
		Analysis		depth profiling of selected light elements and	ihendrix@uwo.ca Lvudmila Goncharova
		- 1		isotopes.	lgonchar@uwo.ca Peter Simpson
Spoctromotry	Wastern Science Centre 649	lon Implantation		The capability currently exists to implant samples	(510) 661-2111 x 82802 Lack Hondriks
spectrometry	Western Science Centre 049			with up to a 2 inch diameter at substrate	ibendriy@uwo.calyudmila.Goncharova
				temperatures in the range $10F^{\circ}$ C to 600° C Wafers	lgonchar@uwo.ca Peter Simnson
				emperatures in the range -195 C to 600 C. waters	nsimnson@uwo.ca
				implanted at ream temperature only. Dece	
				implanted at room temperature only. Dose	
				is monitored by 2 thormosourles imbedded in the	
				is monitored by 3 thermocouples imbedded in the	
				nickel block.	
Spectrometry	Western Science Centre Room	Mass Spectrometry	Thermo Finnigan	Dual inlet and continuous flow capabilities. micro-	519-661-3881 Fred J Longstaffe
	54 (Laboratory for Stable		Delta plus XL	volume, interfaced with GasBench, Costech EA.	flongsta@uwo.ca
	Isotope Sciene)			GC/C and PreCon peripherals.	
				1	J

	_				
			Thermo Finnigan	Dual inlet and continuous flow capabilites, micro-	
			Delat plus XL	volume, interfaced with TC/EA, CO2 laser with CIF3	
				extraction line, UV laser systems	
			Prism II	Dual micro-inlet, multiport, CO2 and H2 analysis	
			VG Optima	Dual micro-inlet, multiport, CO2 and H2 analysis	
Spectrometry	Western Science Centre Room	Elemental Analyzers	Thermo Finningan	For high temperature pyrolysis of water, minerals,	519-661-3881 Fred J Longstaffe
	54 (Laboratory for Stable		High Temperature	phosphates and organic matter. Interfaced to Delta	flongsta@uwo.ca
	Isotope Sciene)		Conversion Elemental	Plus XL for continuous flow analyses of O isotopes	
			Analyzer (TC/EA)	in organic matter and phosphates.	
			Castach Elamontal	Interfaced to Dolta Dive VI for continuous flow	
			Analyzer	analyses of C, N and S isotopes	
			, Carlo Erba Eisons 1108	% determination of CNLH and S	
Spectrometry	Western Science Centre Room	Automated peripherals	GasBench	High precision on-line isotope ratio determination	519-661-3881 Fred J Longstaffe
	54 (Laboratory for Stable			of gas species, waters and carbonates. Combi-Pal	flongsta@uwo.ca
	Isotope Sciene)			autosampler	
			Pre-Con	Fully automated pre-GC/IRMS concentrator for the	
				isotopic characterization of N2O and CH4 at natrual	
				concentrations.	
			Gas	Compound specific isotope analysis of δ 13C, δ 15N,	
			Chromatograph/High	δ18O and δ2H	
			Temperature		
			Conversion (GC/TC)		
			Crusher	Automated crushing system interfaced with the GC-	
				C-IRMS equipment for isotopic analysis of fluid	
				infusions.	
Spectrometry	London Regional Proteomics	Mass Spectrometry	AB Sciex TOF / TOF	High speed acquisition and sensitivity for protein	Ms. Kristina Jurcic maldi@uwo.ca 519-661-2111
	Centre. MALDI Mass		5800 system	detecion in complex mixtures. Ideal platoform for	x82806
	Spectrometry Facility (MSB			gel spot analysis and biomarker discovery. Suitable	
	392)			for MALDI mass spectrometry imaging of tissue.	
				High sensitivity MSA and MS/MS data on small	
				molecules as well as peptides and proteins in	
				tissues.	

Spectrometry Spectrometry	London Regional Proteomics Centre. MALDI Mass Spectrometry Facility (MSB 392) London Regional Proteomics Centre. MALDI Mass Spectrometry Facility (MSB 392)	Mass Spectrometry Mass Spectrometry	AB Sciex 4700 Proteomics Discovery System Bruker Reflex IV Matrix Assisted Laser Desorption Ionization- Time of Flight Mass Spectrometer	Based on MALDI tandem time-of-flight mass spectrometer with TOF/TOF optics. Indetification by peptide findgerprinting in MS mode, partial peptide sequencing of selected precursor ions after collision-induced dissocation in the MS/MS mode. Research grade MALDI time-of-flight instrument equipped with linear/reflectron mass analyzer and post-source decay capability. Enables ultra sensitive analysis at attomole level for peptides and femtomole level for proteins.	Ms. Kristina Jurcic maldi@uwo.ca 519-661-2111 x82806 Ms. Kristina Jurcic maldi@uwo.ca 519-661-2111 x82806
Spectrometry	London Regional Proteomics Centre (Siebens Drake Research Institute Room G31A)	Mass Spectrometry	Thermo Scientific Orbitrap Elite	Mass Spectrometer with dual pressure linear ion trap and high filed Orbitrap mass analyzer. Especially useful when analyzing samples with high complexity and targeting analtes of low abundance in applications such as proteomics, metabolomics and lipidomics. Requires low sample amounts.	Dr. Gilles Lajoie SDRI G31C 519-661-3054 glajoie@uwo.ca Paula Pittock 519-661-2111 x 86697 ppittock@uwo.ca
Spectrometry	London Regional Proteomics Centre (Siebens Drake Research Institute Room G31A)	Mass Spectrometry	Micromass Q-Tof Ultima Global Mass Spectrometer	Mass Spectrometer can be used in positive and negative ion modes in ESI mode. Equipped with lockspray which allows te introduction fo an internal standard without affecting ionization. Used often with a Waters nanoAcquity Ultra Performance LC for LC-MS and LC-MS/MS protein characterization including identificationa dn post transaltional modification analysis.	Dr. Gilles Lajoie SDRI G31C 519-661-3054 glajoie@uwo.ca Paula Pittock 519-661-2111 x 86697 ppittock@uwo.ca
Spectrometry	London Regional Proteomics Centre (Siebens Drake Research Institute Room G31A)	Mass Spectrometry	Quattro Micro Waters/Micromass, Agilent 1100 HPLC system	Triple quadropole mass spectrometer equipped with electrospay interface (ESI). Primarily usef for the routine MS analysis of small molecules, peptides and proteins. Capable of providing MS, LC- MS, LC-MS/MS, SRM, MRM and precursor ion scanning data in both positive and negative ion modes.	Dr. Gilles Lajoie SDRI G31C 519-661-3054 glajoie@uwo.ca Paula Pittock 519-661-2111 x 86697 ppittock@uwo.ca
Spectrometry	London Regional Proteomics Centre (Siebens Drake Research Institute Room G31A)	Mass Spectrometry	Q-TOF Micro Waters/Micromass	This is a smaller version of the orthogonal acceleration Q-Tof mass spectrometer with resolving power of 5000 and higher sensitivity than triple quadrupole mass spectrometers. Has both ESI and nonoelectrospray interfaces and is coupled to a Agilent HPLC for LC-MS and LC-MS/MS analysis.	Dr. Gilles Lajoie SDRI G31C 519-661-3054 glajoie@uwo.ca Paula Pittock 519-661-2111 x 86697 ppittock@uwo.ca

Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Spectropolarimeter	Jasco J-810	Aids in study of protein conformatin and stabilityby providing analysis of secondary structures using CD. CD measures the changes of folding in protein as a function of temeprature as well as protein-ligand and nucleic acid-ligand interactions.	Dr. Gilles Lajoie SDRI G31C 519-661-3054 glajoie@uwo.ca Paula Pittock 519-661-2111 x 86697 ppittock@uwo.ca
Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Fluorometer	Fluorolog-3	Photon-counting insrument used in the analysis of conformational changes in proteins through the fluorescence of endogenous tryptophan or fluorometric assays. Sample chamber is equipped with a stirrer and temperature control is available.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere Ibriere2@uwo.ca 519-661-2111 x85297
Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Fluorescence spectrometer	PicoQuant Fluo Time 200	This system has single-photon timing sensitivity and contains the complete optics and electronics required for recording fluorescence decays by means of Time-Correlated Single Photon Counting (TCSPC). Allows for decay times in the picoseconds range to be resolved. Can distinguish between molecules of interest and background or othe species.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere Ibriere2@uwo.ca 519-661-2111 x85297
Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 394)	Dynamic Light Scattering (DLS)	DynaPro	Used to study the sizes of macromolecules in the range of 0.5nm to 1um in hydrodynamic radius and determine if the samples are monodisperse. Used to assess the suitability of protein preparations for crystallization trials.	Dr. James Choy jchoy4@uwo.ca 519-661-3161 Lee-Ann Briere lbriere2@uwo.ca 519-661-2111 x85297
Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 309) Biomolecular NMR Facility	NMR Spectrometer	Varian INOVA 600 MHz	4 complete channels plus deuterium decoupling accessory. XYZ axial gradients, Variable Temperature control, Varian ¹³ C-enhanced HCN cold probe offering up to 4x ¹ H and 2x ¹³ C sensitivity. VnmrJ 4.2 D software.	Dr. Gary S. Shaw MSB M306 519-661-4021 gshaw1@uwo.ca Dr. Liliana Santamaria Isantam2@uwo.ca
Spectrometry	London Regional Proteomics Centre (Medical Sciences Building Room 309) Biomolecular NMR Facility	NMR Spectrometer	Varian INOVA 600 MHz	4 complete channels plus deuterium decoupling accessory. XYZ axial gradients, Variable Temperature control, Varian 5-mm ¹ H { ¹³ C/ ¹⁵ N} triple resonance XYZ-PFG probe, Varian 8-mm ¹ H{ ¹³ C/ ¹⁵ N} triple resonance Z-PFG probe. VnmrJ 4.2 D software.	Dr. Gary S. Shaw 519-661-4021 gshaw1@uwo.ca Dr. Liliana Santamaria Isantam2@uwo.ca

Spectrometry	Surface Science Western LL31	Dynamic Secondary Ion	Cameca IMF-6f SIMS	Provides elemental and isotopic analysis of very	Mr. Gary Good ggood@uwo.ca 519-661-2111
, ,		Mass Spectrometry		small volumes situated on the surface of solid	Ext. 86742
		, ,		samples. The dynamic SIMS (D-SIMS) mode is	
				characterized by the use of high density, DC	
				primary ion beam currents providing typical sputter	
				rates in the range 0.5-5nm/s. Under such	
				conditions most chemical bonds are broken and	
				only atoms or polyatomic fragments are ejected	
				from the sample surface as neutrals or ions, thus	
				restricting D-SIMS applications to elemental and	
				isotopic depth profiling or mapping. The detection	
				range of this technique extends from matrix	
				element levels down to trace element levels in the	
				ppb range. Provides elemental and isotopic analysis	
				of very small volumes situated on the surface of	
				solid samples. Improved transmission resulting in	
				lower detection limits. Includes numerous	
				imporovements on the 3f.	
Spectrometry	Surface Science Western LL31	Dynamic Secondary Ion	Cameca IMfF-3f SIMS	Provides elemental and isotopic analysis of very	Dr. Stamen Dimov sdimov@uwo.ca 519-661-
		Mass Spectrometry		small volumes situated on the surface of solid	2111 Ext. 89204
				samples. The dynamic SIMS (D-SIMS) mode is	
				characterized by the use of high density, DC	
				primary ion beam currents providing typical sputter	
				rates in the range 0.5-5nm/s. Under such	
				conditions most chemical bonds are broken and	
				only atoms or polyatomic fragments are ejected	
				from the sample surface as neutrals or ions, thus	
				restricting D-SIMS applications to elemental and	
				isotopic depth profiling or mapping. The detection	
				range of this technique extends from matrix	
				element levels down to trace element levels in the	
				ppb range. Elemental analysis covering the entire	
				periodic table. Quantitative microanalysis with	
				detection limits of 200-300ppb, which effectively	
				addresses the analytical gap between the electron	
				microprobe and bulk analytical techniques.	
				Elemental depth profiling. Imaging of the elemental	
				distribution with 1um spatial resolution.	

Spectrometry	Surface Science Western LL31	Time-of-Flight Secondary Ion Mass Spectrometry	ION -TOF GmbH, ION- TOF-SIMS IV	Extreme surface sensitivity with superior chemical selectivity allow for unique identification of chemical structrures and exploration of surface chemistry. Equipped with Bi+, Bi3+, Bi3++, Cs+ and C60+ ion sources. Surface analytical technique capable of detecting ions over a large mass rang of 1-10,000 atomic mass units. Capable of generating an image of lateral distributions of the secondary ions at spatial resolutions of better than 0.15 microns. Motorized sample stage allows for automated analysis, capable of holding wafers up to 8" in diameter/width and equipped with	Dr. Heng-Yong N 2111 Ext. 86734	lie hnie@uwo.ca	519-661-
Spectrometry	Mass Spectrometry Facility ChB 14	High Resolution Mass Spectrometry	Thermo Scientific DFS (Double Focusing Sector) Mass Spectrometer	Used for high resolution mass spectrometry and structure confirmation fo organic and inorganic species. Mass range of 0-1200 m/z. Sample analysis using Electron impact (EI) or Chemical ionization (CI). Samples can be introduced using solid sample probe, Direct Exporsure Probe, Dip-HT probe and Gas Chromatography using an auto sampler.	Doug Hairsine	scidwh@uwo.ca	
Spectrometry	Mass Spectrometry Facility ChB 14	Electrospray Time of Flight Mass Spectrometry (ESI MS)	Bruker micrOTOF II Micromass LCT Micromass/Waters Q- TOF Ultima LC-MS/MS system	Used for analysis of organometallic samples as well as protein samples with mass range 60-20,000m/z Mass range to 10,000m/z at a resolution of 5,000 FWHM. Can operate in "V" and "W" reflectron mode and is capable of producing mass spectra at a resolution of up to 20,000 FWHM.	Doug Hairsine	scidwh@uwo.ca	
Spectrometry	Mass Spectrometry Facility ChB 14	Matrix-Assited Laser Desorption/Ionization Mass Spectrometry	Bruker Daltonics Reflex IV	MALDI time-of-flight instrument equipped with a linear/reflectron mass analyzer and post-source decay capability. Extended mass range detector provides sensitivity up to 300,000 m/z.	Doug Hairsine	scidwh@uwo.ca	
Spectrometry	Mass Spectrometry Facility ChB 14	GC-MS	Schimadzu GCMS- QP2010	Bench top gas chromatograph/quadrupole mass spectrometer for high precision GC/MS analysis. Ideal for qualitative sample analysis and identification of unknowns or quantitation fo trace constituents. Electron impact only instrument with a mass range of 10-1000m/z. Equipped with Shimadzu AOC-20i autoinjector for automated sample injecting.	Doug Hairsine	scidwh@uwo.ca	